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● Most users locked into 
Android and iOS ecosystem 

● Android is ‘nominally’ open source
● But many apps rely on 

closed source google services 

● => Locked into ecosystems with 
gatekeepers 
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‘Centralized’ Ecosystems: Top Notch Security 

● Usability 
● Performance 
● Centralized APIs
● Security Features 
● Rich app ecosystem
● … 
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So… is there a problem?
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Contact Tracing and Apple/Google … 
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https://github.com/DP-3T

But apps cannot access these identifiers!
(to protect users from evi) 

https://github.com/DP-3T


Motivation
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Users should be in control of the phone. 



What about…?

● Rooting / Jailbreaking

● Unlocking the bootloader, Open-source OSes

● Sideloading
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What about…?
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Motivation

But … 

● Allow legacy OS to protect apps and their ecosystem
● Users should be able to protect 'Sovereign‘ (user, bare-metal) App/OS
● 'Common‘ trusted part as small as possible (who watches the watcher?)

Best if no need to watch the watcher. 
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Users should be in control of the phone. 



Ideally … 
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Ideally … 

● Two isolated worlds: legacy and sovereign world
● Both worlds are equally privileged*
● User can assign resources to the worlds
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Hypervisor? 

- Who will maintain the hypervisor? 
- If not e.g., Apple / Google, how would they protect their OS / ecosystem? 
- If Apple / Google then no point of having a hypervisor. 

- We need a simple and small TCB that allows the coexistence of sovereign and 
legacy worlds. Ideally an ‘immutable’ TCB. 
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ARM TrustZone?
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● Secure state is strictly more privileged than normal state
● Who maintains the secure OS? 
● How do we protect legacy OS against from the secure OS? 

● However, Trusted Firmware is trusted and enables context switching, 
communication, and memory isolation between normal and secure state
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ARM TrustZone?



Some Initial Thoughts on “Sovereign Phone“ Design

● Extend Trusted Firmware with support for multiple isolated worlds in the
normal state

● Address Space Controller can be used for memory and peripheral isolation, 
configuration per-core and adapted on world switches

● Manage without inspection.
● Hopefully small changes to legacy OSs. 

● Related Work: TrustICE [1], Sanctuary [2], Keystone [3] (RISC-V) 
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[1] Sun, He, et al. "Trustice: Hardware-assisted isolated computing environments on mobile devices." 2015 45th Annual IEEE/IFIP 
International Conference on Dependable Systems and Networks. IEEE, 2015.
[2] Brasser, Ferdinand, et al. "SANCTUARY: ARMing TrustZone with User-space Enclaves." NDSS. 2019.
[3] Lee, Dayeol, et al. "Keystone: An open framework for architecting trusted execution environments." Proceedings of the Fifteenth
European Conference on Computer Systems. 2020.
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Considerations

● Common TCB: Hardware, boot stages up until Trusted Firmware, Trusted
Firmware runtime, (Code run in secure state)

● Additional TCB for legacy OS: additions to Trusted Firmware
● Legacy OS is responsible for scheduling and can DoS the sovereign world
● Timer interrupts need to be handled by legacy world, even when sovereign

world is running
● User has full control over hardware: can configure Address Space Controller 

and install sovereign world code
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UI issues

● User needs to be aware of the Sovereign vs Legacy world.
● Indicators / hardware switches
● ‘Attestation’ to the user
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Current Status
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● Implementation for aarch64 on qemu, until now:
○ “sovereign” state in Trusted Firmware
○ SMC handler  in Trusted Firmware that switches context 
○ Sovereign binary loaded statically in memory
○ Sovereign World preemptable
○ …



Conclusion
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● A balance needs to be found between the services provided by the 
legacy OS companies and the needs of users to control their phones.

● ‘Manage without inspection’ is a key functionality. 
● Why would legacy OS companies support this? 

arxiv.org/abs/2102.02743

https://t.co/Yzcps6UPFG?amp=1

