
Sovereign Smartphone
Srdjan Čapkun

ETH Zurich

(with Friederike Groschupp, Ivan Puddu, Moritz Schneider, Mark Kuhne, Shweta Shinde)

Google / Apple Ecosystems

● Most users locked into
Android and iOS ecosystem

2

Google / Apple Ecosystems

● Most users locked into
Android and iOS ecosystem

● Android is ‘nominally’ open source
● But many apps rely on

closed source google services

3

Google / Apple Ecosystems

● Most users locked into
Android and iOS ecosystem

● Android is ‘nominally’ open source
● But many apps rely on

closed source google services

● => Locked into ecosystems with
gatekeepers

4

‘Centralized’ Ecosystems: Top Notch Security

● Usability
● Performance
● Centralized APIs
● Security Features
● Rich app ecosystem
● …

5

6

So… is there a problem?

8

So… is there a problem?

9

So… is there a problem?

10

So… is there a problem?

11

12

So… is there a problem?

13

Contact Tracing and Apple/Google …

14

15

Iu&^#&980
B

SEEN NUMBERS
...

Iu&^#&980
Kja&#^@hk

SEEN NUMBERS
...

Lyvdka((@

Lyvdka((@

SEEN NUMBERS
...

Lyvdka((@ Kja&#^@hk

A

C

https://github.com/DP-3T

But apps cannot access these identifiers!
(to protect users from evi)

https://github.com/DP-3T

Motivation

16

Users should be in control of the phone.

What about…?

● Rooting / Jailbreaking

● Unlocking the bootloader, Open-source OSes

● Sideloading

17

What about…?

18

Motivation

But …

● Allow legacy OS to protect apps and their ecosystem
● Users should be able to protect 'Sovereign‘ (user, bare-metal) App/OS
● 'Common‘ trusted part as small as possible (who watches the watcher?)

Best if no need to watch the watcher.

19

Users should be in control of the phone.

Ideally …

20
*One world in charge of scheduling

Application

OS

Hardware

Application App

Legacy OS

App Sovereign
World

Hardware
Current Smartphones Sovereign Smartphone

● Two isolated worlds: legacy and sovereign world
● Both worlds are equally privileged*
● User can assign resources to the worlds

Ideally …

● Two isolated worlds: legacy and sovereign world
● Both worlds are equally privileged*
● User can assign resources to the worlds

21
*One world needs to be in charge of scheduling

Application

OS

Hardware

Application App

Legacy OS

App S
W
1

Hardware
Current Smartphones Sovereign Smartphone

S
W
2

S
W
3

Hypervisor?

- Who will maintain the hypervisor?
- If not e.g., Apple / Google, how would they protect their OS / ecosystem?
- If Apple / Google then no point of having a hypervisor.

- We need a simple and small TCB that allows the coexistence of sovereign and
legacy worlds. Ideally an ‘immutable’ TCB.

22

ARM TrustZone?

23

Monitor (Trusted Firmware)

Operating System

Application ApplicationN-EL 0

Memory Peripherals

Secure Operating System

Trusted App Trusted App

Address Space Controller

Normal State Secure State

N-EL 1

EL 3

S-EL 0

S-EL 1

HypervisorN-EL 2

● Secure state is strictly more privileged than normal state
● Who maintains the secure OS?
● How do we protect legacy OS against from the secure OS?

● However, Trusted Firmware is trusted and enables context switching,
communication, and memory isolation between normal and secure state

24

ARM TrustZone?

Some Initial Thoughts on “Sovereign Phone“ Design

● Extend Trusted Firmware with support for multiple isolated worlds in the
normal state

● Address Space Controller can be used for memory and peripheral isolation,
configuration per-core and adapted on world switches

● Manage without inspection.
● Hopefully small changes to legacy OSs.

● Related Work: TrustICE [1], Sanctuary [2], Keystone [3] (RISC-V)

25

[1] Sun, He, et al. "Trustice: Hardware-assisted isolated computing environments on mobile devices." 2015 45th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks. IEEE, 2015.
[2] Brasser, Ferdinand, et al. "SANCTUARY: ARMing TrustZone with User-space Enclaves." NDSS. 2019.
[3] Lee, Dayeol, et al. "Keystone: An open framework for architecting trusted execution environments." Proceedings of the Fifteenth
European Conference on Computer Systems. 2020.

2626

Monitor (Trusted Firmware)

Operating System

Application ApplicationN-EL 0

Memory Peripherals

Secure Operating System

Trusted App Trusted App

Normal State Secure State

N-EL 1

EL 3

S-EL 0

S-EL 1

Address Space Controller

enforced in HW (NS bit)

2727

Monitor (Trusted Firmware)

Operating System

Application ApplicationN-EL 0

Memory Peripherals

Secure
OS

TA TA

Normal State Secure State

N-EL 1

EL 3

S-EL 0

S-EL 1

enforced in HW (NS bit)

Address Space Controller

2828

Monitor (Trusted Firmware)

Application ApplicationN-EL 0

Memory Peripherals

Secure
OS

TA TA

Normal State

Secure State

N-EL 1

EL 3

S-EL 0

S-EL 1

enforced in HW (NS bit) enforced by TF

Legacy World Sovereign World

Sovereign OS

App

Legacy OS Scheduler

Address Space Controller

2929

Monitor (Trusted Firmware)

Application ApplicationN-EL 0

Memory Peripherals

Secure
OS

TA TA

Normal State

Secure State

N-EL 1

EL 3

S-EL 0

S-EL 1

enforced in HW (NS bit) enforced by TF

Legacy World Sovereign World

AppLegacy OS Scheduler

Address Space Controller

3030

Monitor (Trusted Firmware)

Application ApplicationN-EL 0

Memory Peripherals

Secure
OS

TA TA

Normal State

Secure State

N-EL 1

EL 3

S-EL 0

S-EL 1

enforced in HW (NS bit) enforced by TF

Legacy World Sovereign World

SOS

App

Legacy OS Scheduler

Address Space Controller

Sovereign HV

SOS

N-EL 2

AA

3131

Monitor (Trusted Firmware)

Application ApplicationN-EL 0

Memory Peripherals

Secure
OS

TA TA

Normal State

Secure State

N-EL 1

EL 3

S-EL 0

S-EL 1

enforced in HW (NS bit) enforced by TF

Legacy World Sovereign World

Sovereign OS

App

Legacy OS Scheduler

Address Space Controller

3232

Monitor (Trusted Firmware)

Legacy OS

Application ApplicationN-EL 0

Memory Peripherals

Secure
OS

TA TA

Normal State

Secure State

N-EL 1

EL 3

S-EL 0

S-EL 1

enforced in HW (NS bit) enforced by TF

Legacy World Sovereign World

Sovereign OS

App

Scheduler

SMC

Address Space Controller

3333

Monitor (Trusted Firmware)

Legacy OS

Application ApplicationN-EL 0

Memory Peripherals

Secure
OS

TA TA

Normal State

Secure State

N-EL 1

EL 3

S-EL 0

S-EL 1

enforced in HW (NS bit) enforced by TF

Legacy World Sovereign World

Sovereign OS

App

Scheduler

configure

Address Space Controller

ERET

save, restore context

3434

Monitor (Trusted Firmware)

Legacy OS

Application ApplicationN-EL 0

Memory Peripherals

Secure
OS

TA TA

Address Space Controller

Normal State

Secure State

N-EL 1

EL 3

S-EL 0

S-EL 1

enforced in HW (NS bit) enforced by TF

Legacy World Sovereign World

Sovereign OS

App

Scheduler

Considerations

● Common TCB: Hardware, boot stages up until Trusted Firmware, Trusted
Firmware runtime, (Code run in secure state)

● Additional TCB for legacy OS: additions to Trusted Firmware
● Legacy OS is responsible for scheduling and can DoS the sovereign world
● Timer interrupts need to be handled by legacy world, even when sovereign

world is running
● User has full control over hardware: can configure Address Space Controller

and install sovereign world code

35

UI issues

● User needs to be aware of the Sovereign vs Legacy world.
● Indicators / hardware switches
● ‘Attestation’ to the user

36

Current Status

37

● Implementation for aarch64 on qemu, until now:
○ “sovereign” state in Trusted Firmware
○ SMC handler in Trusted Firmware that switches context
○ Sovereign binary loaded statically in memory
○ Sovereign World preemptable
○ …

Conclusion

38

● A balance needs to be found between the services provided by the
legacy OS companies and the needs of users to control their phones.

● ‘Manage without inspection’ is a key functionality.
● Why would legacy OS companies support this?

arxiv.org/abs/2102.02743

https://t.co/Yzcps6UPFG?amp=1

