
Reverse Engineering of Neural Network Architectures Through Side-channel Information

Reverse Engineering of Neural Network
Architectures Through Side-channel Information

Virtual OpenS3 Workshop, November 4, 2021

1 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Outline

1 Introduction

2 Reverse Engineering of Neural Networks

3 Recovering the Input of Neural Networks

2 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Introduction

Outline

1 Introduction

2 Reverse Engineering of Neural Networks

3 Recovering the Input of Neural Networks

3 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Introduction

Machine Learning and Security

Machine learning has become mainstream across industries.

It is also widely used in security applications.

Having strong ML models is an asset, on which many
companies invest a significant amount of time and money to
develop.

How secure are such ML models against reverse engineering
attacks?

4 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Introduction

Machine Learning and Security

People investigate the leakage of sensitive information from
machine learning models about individual data records.

ML model provided by malicious attacker can give information
about the training set.

Reverse engineering of CNNs via timing and memory leakage.

Exploits of the line buffer in a convolution layer of a CNN.

5 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Introduction

Neural Networks

We consider neural networks: multilayer perceptron and
convolutional neural networks.

They are commonly used machine learning algorithms in
modern applications.

They consist of different types of layers that are also occurring
in other architectures like recurrent neural networks.

In the case of MLP, the layers are all identical, which makes it
more difficult for SCA and could be consequently considered
as the worst-case scenario.

6 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Reverse Engineering of Neural Networks

Outline

1 Introduction

2 Reverse Engineering of Neural Networks

3 Recovering the Input of Neural Networks

7 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Reverse Engineering of Neural Networks

Threat Model

Recover the neural network architecture using only
side-channel information.

No assumption on the type of inputs or its source, as we work
with real numbers.

We assume that the implementation of the machine learning
algorithm does not include any side-channel countermeasures.

8 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Reverse Engineering of Neural Networks

Attacker’s Capability

The attacker in consideration is a passive one.

Acquiring measurements of the device while operating
“normally” and not interfering with its internal operations by
evoking faulty computations.

Attacker does not know the architecture of the used network
but can feed random (and hence known) inputs to the
architecture.

Attacker is capable of measuring side-channel information
leaked from the implementation of the targeted architecture.

Targets are Atmel ATmega328P and ARM Cortex-M3.

9 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Reverse Engineering of Neural Networks

Implementation Attacks and Side-channel Analysis

Implementation attacks

Implementation attacks do not aim at the weaknesses of the
algorithm, but on its implementation.

Side-channel analysis (SCAs) – passive, non-invasive
attacks.

SCA – one of the most powerful category of attacks on crypto
devices.

10 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Reverse Engineering of Neural Networks

Side-channel Analysis

Differential Power Analysis (DPA) (DEMA) is an advanced
form of SCA, which applies statistical techniques to recover
secret information from physical signatures.

The attack normally tests for dependencies between actual
physical signature (or measurements) and hypothetical
physical signature, i.e., predictions on intermediate data. The
hypothetical signature is based on a leakage model and key
hypothesis.

11 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Reverse Engineering of Neural Networks

Differential Power Analysis

12 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Reverse Engineering of Neural Networks

Setup

(a) Target 8-bit microcontroller
mechanically decapsulated

(b) Langer RF-U 5-2 Near Field
Electromagnetic passive Probe

Figure: Experimental Setup 1

13 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Reverse Engineering of Neural Networks

Setup

(a) The complete measurement setup
14 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Reverse Engineering of Neural Networks

Setup

The exploited leakage model of the target device is the
Hamming weight (HW) model.

A microcontroller loads sensitive data to a data bus to
perform indicated instructions.

The training phase is conducted offline, and the trained
network is then implemented in C language and compiled on
the microcontroller.

HW (x) =
n∑

i=1

xi , (1)

15 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Reverse Engineering of Neural Networks

What Do We Need

Information about layers.

Information about neurons.

Information about activation functions.

Information about weights.

16 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Reverse Engineering of Neural Networks

Activation Functions

An activation function of a node is a function f defining the
output of a node given an input or set of inputs.

y = Activation(
∑

(weight · input) + bias). (2)

Sigmoid, tanh, softmax, ReLU.

17 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Reverse Engineering of Neural Networks

Activation Functions

f (x) =
1

1 + e−x
. (3)

f (x) = tanh(x) =
2

1 + e−2x
− 1. (4)

f (x)j =
exj∑K
k=1 e

xk
, for j = 1, . . . ,K . (5)

f (x) = max(0, x). (6)

18 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Reverse Engineering of Neural Networks

Reverse Engineering the Activation Functions

The timing behavior can be observed directly on the EM trace.

We collect EM traces and measure the timing of the
activation function computation from the measurements.

Table: Minimum, Maximum, and Mean computation time (in ns) for different
activation functions

Activation Function Minimum Maximum Mean

ReLU 5 879 6 069 5 975
Sigmoid 152 155 222 102 189 144

Tanh 51 909 210 663 184 864
Softmax 724 366 877 194 813 712

19 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Reverse Engineering of Neural Networks

Reverse Engineering the Activation Functions

(b) ReLU (c) Sigmoid (d) Tanh (e) Softmax

Figure: Timing behavior for different activation functions

20 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Reverse Engineering of Neural Networks

Reverse Engineering the Multiplication Operation

For the recovery of the weights, we use the Correlation Power
Analysis (CPA) i.e., a variant of DPA using the Pearson’s
correlation as a statistical test.

CPA targets the multiplication m = x · w of a known input x
with a secret weight w .

Using the HW model, the adversary correlates the activity of
the predicted output m for all hypothesis of the weight.

Thus, the attack computes ρ(t,w), for all hypothesis of the
weight w , where ρ is the Pearson correlation coefficient and t
is the side-channel measurement.

The correct value of the weight w will result in a higher
correlation standing out from all other wrong hypotheses w∗,
given enough measurements.

21 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Reverse Engineering of Neural Networks

Reverse Engineering the Multiplication Operation

We start by analyzing the way the compiler is handling
floating-point operations for our target.

The generated assembly confirms the usage of IEEE 754
compatible representation.

Since the target device is an 8-bit microcontroller, the
representation follows a 32-bit pattern (b31...b0), being stored
in 4 registers.

The 32-bit consist of: 1 sign bit (b31), 8 biased exponent bits
(b30...b23) and 23 mantissa (fractional) bits (b22...b0).

(−1)b31 × 2(b30...b23)2−127 × (1.b22...b0)2.

22 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Reverse Engineering of Neural Networks

Reverse Engineering the Multiplication Operation

We target the result of the multiplication m of known input
values x and unknown weight w .

For every input, we assume different possibilities for weight
values.

We then perform the multiplication and estimate the IEEE
754 binary representation of the output.

Then, we perform the recovery of the 23-bit mantissa of the
weight.

The sign and exponent could be recovered separately.

23 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Reverse Engineering of Neural Networks

Reverse Engineering the Multiplication Operation

200 800 1000400 600
Number of traces

0.75

0.8

0.85

0.9

0.95

1

C
or

re
la

tio
n

Targeted value
Incorrect values

(a) First byte recovery (sign and 7-bit
exponent)

200 800 1000400 600
Number of traces

0

0.2

0.4

0.6

0.8

1

C
or

re
la

tio
n

Targeted value
Incorrect values

(b) Second byte recovery (lsb exponent
and mantissa)

Figure: Recovery of the weight

24 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Reverse Engineering of Neural Networks

Reverse Engineering the Number of Neurons and Layers

To perform the reverse engineering of the network structure,
we first use SPA (SEMA).

0.5 1 1.5 2
Time samples 106

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

A
m

pl
itu

de

(a) One hidden layer with
6 neurons

0.5 1 1.5 2 2.5 3 3.5
Time samples 106

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
A

m
pl

itu
de

(b) 2 hidden layers (6 and
5 neurons each)

1 2 3 4
Time samples 106

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

A
m

pl
itu

de

(c) 3 hidden layers (6,5,5
neurons each)

Figure: SEMA on hidden layers

25 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Reverse Engineering of Neural Networks

Reverse Engineering the Number of Neurons and Layers

To determine if the targeted neuron is in the same layer as
previously attacked neurons, or in the next layer, we perform a
weight recovery using two sets of data.

Let us assume that we are targeting the first hidden layer (the
same approach can be done on different layers as well).

Assume that the input is a vector of length N0, so the input x
can be represented x = {x1, ..., xN0}.
For the targeted neuron yn in the hidden layer, perform the
weight recovery on 2 different hypotheses.

26 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Reverse Engineering of Neural Networks

Reverse Engineering the Number of Neurons and Layers

For the first hypothesis, assume that the yn is in the first
hidden layer. Perform weight recovery individually using xi , for
1 ≤ i ≤ N0.

For the second hypothesis, assume that yn is in the next
hidden layer (the second hidden layer).

Perform weight recovery individually using yi , for
1 ≤ i ≤ (n − i).

For each hypothesis, record the maximum (absolute)
correlation value, and compare both.

Since the correlation depends on both inputs to the
multiplication operation, the incorrect hypothesis will result in
a lower correlation value.

27 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Reverse Engineering of Neural Networks

Recovery of the Full Network Layout

The combination of previously developed individual techniques
can thereafter result in full reverse engineering of the network.

The full network recovery is performed layer by layer, and for
each layer, the weights for each neuron have to be recovered
one at a time.

The first step is to recover the weight wL0 of each connection
from the input layer (L0) and the first hidden layer (L1).

In order to determine the output of the sum of the
multiplications, the number of neurons in the layer must be
known.

Using the same set of traces, timing patterns for different
inputs to the activation function can be built.

The same steps are repeated in the subsequent layers
L1, ..., LN−1.

28 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Reverse Engineering of Neural Networks

Reverse Engineering the Number of Neurons and Layers

Figure: Methodology to reverse engineer the target neural network

29 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Reverse Engineering of Neural Networks

ARM Cortex M-3 and MLP

(a) ReLU (b) Sigmoid (c) Tanh

Figure: Timing behavior for different activation functions

30 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Reverse Engineering of Neural Networks

ARM Cortex M-3 and MLP

(a) Observing pattern and
timing of multiplication
and activation function

(b) Correlation
comparison between
correct and incorrect
mantissa for
weight=2.453

(c) SEMA on hidden
layers with 3 hidden layers
(6,5,5 neurons each)

Figure: Analysis of an (6,5,5,) neural network

31 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Reverse Engineering of Neural Networks

ARM Cortex M-3 and MLP

Tests with MNIST and DPAv4 datasets.

DPAv4: the original accuracy equals 60.9% and the accuracy
of the reverse engineered network is 60.87%.

MNIST: the accuracy of the original network is equal to
98.16% and the accuracy of the reverse engineered network
equals 98.15%, with an average weight error converging to
0.0025.

32 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Reverse Engineering of Neural Networks

ARM Cortex M-3 and CNN

We target CIFAR-10 dataset.

We choose as target the multiplication operation from the
input with the weight, similar as in previous experiments.

Differing from previous experiments, the operations on real
values are here performed using fixed-point arithmetic.

The numbers are stored using 8-bit data type – int8 (q7).

The resulting multiplication is stored in temporary int

variable.

The original accuracy of the CNN equals 78.47% and the
accuracy of the recovered CNN is 78.11%.

33 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Reverse Engineering of Neural Networks

ARM Cortex M-3 and CNN

(a) int scenario (b) int8 scenario

Figure: The correlation of correct and wrong weight hypotheses on different number of
traces targeting the result of multiplication operation stored as different variable type:
(a) int, (b) int8

34 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Recovering the Input of Neural Networks

Outline

1 Introduction

2 Reverse Engineering of Neural Networks

3 Recovering the Input of Neural Networks

35 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Recovering the Input of Neural Networks

Threat Model

The underlying neural network architecture of the used
network is public and all the weights are known.

Attacker is capable of measuring side-channel information
leaked from the implementation of the targeted architecture.

The crucial information for this work are the weights of the
first layer.

Indeed, when MLP reads the input, it propagates it to all the
nodes, performing basic arithmetic operations.

This arithmetic operation with different weights and common
unknown input leads to input recovery attack via side-channel.

36 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Recovering the Input of Neural Networks

Experimental Setup

The training phase is conducted offline, and the trained
network is then implemented in C language and compiled on
the microcontroller.

In our experiments, we consider MLP architectures consisting
of a different number of layers and nodes in those layers.

Note, we are only interested in the input layer where a higher
number of neurons is beneficial for the attacker.

37 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Recovering the Input of Neural Networks

Results

It can be extremely complex to recover the input by observing
outputs from a known network.

The proposed attack targets the multiplication operation in
the first hidden layer.

The main target for CPA is the multiplication m = x · w of a
known weight w with a secret input x .

As x changes from one measurement (input) to another,
information learned from one measurement cannot be used
with another measurement, preventing any statistical analysis
over a set of different inputs.

38 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Recovering the Input of Neural Networks

Results

To perform information exploitation over a single
measurement, we perform a horizontal attack.

The weights in the first hidden layer are all multiplied with the
same input x , one after the other.

M multiplications, corresponding to M different weights (or
neurons) in the first hidden layer are isolated.

A single trace is cut into M smaller traces, each one
corresponding to one multiplication with a known associated
weight.

Next, the value of the input is statistically inferred by applying
a standard CPA as explained before on the M smaller traces.

39 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Recovering the Input of Neural Networks

HPA

x*w1 x*w2 x*w3 x*w4

x*w1

x*w2

x*w3

x*w4

One measurement with 4 multiplications
aligned horizontally

Split to 4
multiplications

Figure: Illustration of recovery of multiple measurements from a single measurement
processing several elementary operations sequentially.

40 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Recovering the Input of Neural Networks

Results on ATMega

20 40 60 80 100
number of neurons

0.75

0.8

0.85

0.9

0.95

1
co

rr
el

at
io

n
Targeted value
Incorrect values

Figure: The first byte recovery (sign and 7-bit exponent).

41 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Recovering the Input of Neural Networks

Results

The attack needs around 20 or more multiplications to reliably
recover the input.

In general, 70 multiplications are enough to recover all the
bytes of the input, up to the desired precision of 2 decimal
digits.

This means that in the current setting, the proposed attack
works very well on medium to large-sized networks, with at
least 70 neurons in the first hidden layer, which is no issue in
modern architectures used today.

42 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Recovering the Input of Neural Networks

Results on ARM Cortex M3

200 400 600 800 1000
number of neurons

0

0.2

0.4

0.6

0.8

1.0
co

rr
e
la

ti
o
n

Targeted value
Incorrect values

Figure: Correlation comparison between correct and incorrect inputs for target value
2.453.

43 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Recovering the Input of Neural Networks

Attack on MNIST Database

Figure: Original images (top) and recovered images with precision error (bottom).

44 / 45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Recovering the Input of Neural Networks

Questions?

Thanks for your attention!

stjepan@computer.orgQ?

45 / 45

	Introduction
	Reverse Engineering of Neural Networks
	Recovering the Input of Neural Networks

