Reverse Engineering of Neural Network Architectures Through Side-channel Information

Reverse Engineering of Neural Network
Architectures Through Side-channel Information

Virtual OpenS3 Workshop, November 4, 2021

1/45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Outline

Introduction
Reverse Engineering of Neural Networks

Recovering the Input of Neural Networks

2/45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

‘— Introduction

Outline

Introduction

3/45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

‘— Introduction

Machine Learning and Security

m Machine learning has become mainstream across industries.
m It is also widely used in security applications.

m Having strong ML models is an asset, on which many
companies invest a significant amount of time and money to
develop.

m How secure are such ML models against reverse engineering
attacks?

4/45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

‘— Introduction

Machine Learning and Security

m People investigate the leakage of sensitive information from
machine learning models about individual data records.

m ML model provided by malicious attacker can give information
about the training set.

Reverse engineering of CNNs via timing and memory leakage.

Exploits of the line buffer in a convolution layer of a CNN.

5/45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

‘— Introduction

Neural Networks

m We consider neural networks: multilayer perceptron and
convolutional neural networks.

m They are commonly used machine learning algorithms in
modern applications.

m They consist of different types of layers that are also occurring
in other architectures like recurrent neural networks.

m In the case of MLP, the layers are all identical, which makes it
more difficult for SCA and could be consequently considered
as the worst-case scenario.

6/45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

‘—Reverse Engineering of Neural Networks

Outline

Reverse Engineering of Neural Networks

7/45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

‘—Reverse Engineering of Neural Networks

Threat Model

m Recover the neural network architecture using only
side-channel information.

m No assumption on the type of inputs or its source, as we work
with real numbers.

m We assume that the implementation of the machine learning
algorithm does not include any side-channel countermeasures.

8/45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Reverse Engineering of Neural Networks

Attacker’'s Capability

m The attacker in consideration is a passive one.

m Acquiring measurements of the device while operating
“normally” and not interfering with its internal operations by
evoking faulty computations.

m Attacker does not know the architecture of the used network
but can feed random (and hence known) inputs to the
architecture.

m Attacker is capable of measuring side-channel information
leaked from the implementation of the targeted architecture.

m Targets are Atmel ATmega328P and ARM Cortex-M3.

9/45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

‘—Reverse Engineering of Neural Networks

Implementation Attacks and Side-channel Analysis

Implementation attacks

Implementation attacks do not aim at the weaknesses of the
algorithm, but on its implementation.

m Side-channel analysis (SCAs) — passive, non-invasive
attacks.

m SCA — one of the most powerful category of attacks on crypto
devices.

10/45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

‘—Reverse Engineering of Neural Networks

Side-channel Analysis

m Differential Power Analysis (DPA) (DEMA) is an advanced
form of SCA, which applies statistical techniques to recover
secret information from physical signatures.

m The attack normally tests for dependencies between actual
physical signature (or measurements) and hypothetical
physical signature, i.e., predictions on intermediate data. The
hypothetical signature is based on a leakage model and key
hypothesis.

11/45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

'—Reverse Engineering of Neural Networks

Differential Power Analysis

12/45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

‘—Reverse Engineering of Neural Networks

Setup

(a) Target 8-bit microcontroller (b) Langer RF-U 5-2 Near Field
mechanically decapsulated Electromagnetic passive Probe

Figure: Experimental Setup 1

13/45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

‘—Reverse Engineering of Neural Networks

Setup

(a) The complete measurement setup
14/45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

‘—Reverse Engineering of Neural Networks

Setup

m The exploited leakage model of the target device is the
Hamming weight (HW) model.

m A microcontroller loads sensitive data to a data bus to
perform indicated instructions.

m The training phase is conducted offline, and the trained
network is then implemented in C language and compiled on
the microcontroller.

HW (x) = ZXI) (1)
i=1

15/45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

‘—Reverse Engineering of Neural Networks

What Do We Need

Information about layers.
Information about neurons.
Information about activation functions.

Information about weights.

16 /45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

‘—Reverse Engineering of Neural Networks

Activation Functions

m An activation function of a node is a function f defining the
output of a node given an input or set of inputs.

y = Activation(Z(weight - input) + bias). (2)

m Sigmoid, tanh, softmax, RelLU.

17/45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

‘—Reverse Engineering of Neural Networks

Activation Functions

) = @

F(x) = tanh(x) = 1+2e2 - (4)
f(x),-:zif_:eXk, for j=1,....K. (5)
f(x) = max(0, x). (6)

18/45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

‘—Reverse Engineering of Neural Networks

Reverse Engineering the Activation Functions

m The timing behavior can be observed directly on the EM trace.

m We collect EM traces and measure the timing of the
activation function computation from the measurements.

Table: Minimum, Maximum, and Mean computation time (in ns) for different
activation functions

Activation Function | Minimum Maximum Mean
RelLU 5879 6069 5975
Sigmoid 152155 222102 189144
Tanh 51909 210663 184864
Softmax 724 366 877194 813712

19/45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

‘—Reverse Engineering of Neural Networks

Reverse Engineering the Activation Functions

(b) ReLU (c) Sigmoid (d) Tanh (e) Softmax

Figure: Timing behavior for different activation functions

20/45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Reverse Engineering the Multiplication Operation

m For the recovery of the weights, we use the Correlation Power
Analysis (CPA) i.e., a variant of DPA using the Pearson’s
correlation as a statistical test.

m CPA targets the multiplication m = x - w of a known input x
with a secret weight w.

m Using the HW model, the adversary correlates the activity of
the predicted output m for all hypothesis of the weight.

m Thus, the attack computes p(t, w), for all hypothesis of the
weight w, where p is the Pearson correlation coefficient and t
is the side-channel measurement.

m The correct value of the weight w will result in a higher
correlation standing out from all other wrong hypotheses w*,
given enough measurements.

21/45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

‘—Reverse Engineering of Neural Networks

Reverse Engineering the Multiplication Operation

m We start by analyzing the way the compiler is handling
floating-point operations for our target.

m The generated assembly confirms the usage of IEEE 754
compatible representation.

m Since the target device is an 8-bit microcontroller, the
representation follows a 32-bit pattern (bsi...bp), being stored
in 4 registers.

m The 32-bit consist of: 1 sign bit (b31), 8 biased exponent bits
(b3o...b23) and 23 mantissa (fractional) bits (bg2...bo).

(—]_)b31 X 2(b30"'b23)2_127 X (]_.b22...b0)2.

22/45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

‘—Reverse Engineering of Neural Networks

Reverse Engineering the Multiplication Operation

We target the result of the multiplication m of known input
values x and unknown weight w.

m For every input, we assume different possibilities for weight
values.

m We then perform the multiplication and estimate the IEEE
754 binary representation of the output.

m Then, we perform the recovery of the 23-bit mantissa of the
weight.

m The sign and exponent could be recovered separately.

23/45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

‘—Reverse Engineering of Neural Networks

Reverse Engineering the Multiplication Operation

ncorrect values —Incorrect values
0.95 0.
s 5
ZB' 0.9 g 0.6
[S
S S
©0.85 0.4
0.8 0.2
0.75 0
200 400 600 800 1000 200 400 600 800 1000
Number of traces Number of traces

(a) First byte recovery (sign and 7-bit (b) Second byte recovery (Isb exponent
exponent) and mantissa)

Figure: Recovery of the weight

24 /45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Reverse Engineering of Neural Networks

Reverse Engineering the Number of Neurons and Layers

m To perform the reverse engineering of the network structure,
we first use SPA (SEMA).

Amplitude

Amplitude
Amplitude

02

025

1 2 3 4

05 1 15 2 25 3 35

(a) One hidden layer with (b) 2 hidden layers (6 and(c) 3 hidden layers (6,5,5
6 neurons 5 neurons each) neurons each)

Figure: SEMA on hidden layers

25/45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

‘—Reverse Engineering of Neural Networks

Reverse Engineering the Number of Neurons and Layers

m To determine if the targeted neuron is in the same layer as
previously attacked neurons, or in the next layer, we perform a
weight recovery using two sets of data.

m Let us assume that we are targeting the first hidden layer (the
same approach can be done on different layers as well).

m Assume that the input is a vector of length Np, so the input x
can be represented x = {xi, ..., X, }-

m For the targeted neuron y, in the hidden layer, perform the
weight recovery on 2 different hypotheses.

26 /45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

‘—Reverse Engineering of Neural Networks

Reverse Engineering the Number of Neurons and Layers

m For the first hypothesis, assume that the y, is in the first
hidden layer. Perform weight recovery individually using x;, for
1 <7< N.

m For the second hypothesis, assume that y, is in the next
hidden layer (the second hidden layer).

m Perform weight recovery individually using y;, for
1<i<(n—1i).

m For each hypothesis, record the maximum (absolute)
correlation value, and compare both.

m Since the correlation depends on both inputs to the
multiplication operation, the incorrect hypothesis will result in
a lower correlation value.

27 /45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Reverse Engineering of Neural Networks

Recovery of the Full Network Layout

m The combination of previously developed individual techniques
can thereafter result in full reverse engineering of the network.

m The full network recovery is performed layer by layer, and for
each layer, the weights for each neuron have to be recovered
one at a time.

m The first step is to recover the weight w;, of each connection
from the input layer (Lo) and the first hidden layer (L;).

m In order to determine the output of the sum of the
multiplications, the number of neurons in the layer must be
known.

m Using the same set of traces, timing patterns for different
inputs to the activation function can be built.

m The same steps are repeated in the subsequent layers
Li,...;Ly_1.

28/45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

‘—Reverse Engineering of Neural Networks

Reverse Engineering the Number of Neurons and Layers

Figure: Methodology to reverse engineer the target neural network

29/45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

ARM Cortex M-3 and MLP

mbega s
o e
rdane - e e T
100 21000
N . 165000 . 200000 e e
H § i R
(] £ 100000 e e £ 1a00ng
e i i it £
¥ 155000| ¥ 180000
130009 12002
11300 1000 Py
o =5 to w5 oo o5 To 13 2o M —is oo es G0 o5 To 15 ae SS5 s cho s we w5 1o 15 2o
opt i ot

(a) ReLU (b) Sigmoid (c) Tanh

Figure: Timing behavior for different activation functions

30/45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

ARM Cortex M-3 and MLP

(a) Observing pattern and(b) Correlation (c) SEMA on hidden
timing of multiplication comparison between layers with 3 hidden layers
and activation function correct and incorrect (6,5,5 neurons each)
mantissa for
weight=2.453

Figure: Analysis of an (6,5,5,) neural network

31/45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

‘—Reverse Engineering of Neural Networks

ARM Cortex M-3 and MLP

m Tests with MNIST and DPAv4 datasets.

m DPAvV4: the original accuracy equals 60.9% and the accuracy
of the reverse engineered network is 60.87%.

m MNIST: the accuracy of the original network is equal to
08.16% and the accuracy of the reverse engineered network
equals 98.15%, with an average weight error converging to
0.0025.

32/45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

‘—Reverse Engineering of Neural Networks

ARM Cortex M-3 and CNN

m We target CIFAR-10 dataset.

m We choose as target the multiplication operation from the
input with the weight, similar as in previous experiments.

m Differing from previous experiments, the operations on real
values are here performed using fixed-point arithmetic.

m The numbers are stored using 8-bit data type — int8 (q7).

m The resulting multiplication is stored in temporary int
variable.

m The original accuracy of the CNN equals 78.47% and the
accuracy of the recovered CNN is 78.11%.

33/45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

‘—Reverse Engineering of Neural Networks

ARM Cortex M-3 and CNN

(a) int scenario (b) int8 scenario

Figure: The correlation of correct and wrong weight hypotheses on different number of
traces targeting the result of multiplication operation stored as different variable type:
(a) int, (b) int8

34/45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

‘—Recovering the Input of Neural Networks

Outline

Recovering the Input of Neural Networks

35/45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Recovering the Input of Neural Networks

Threat Model

m The underlying neural network architecture of the used
network is public and all the weights are known.

m Attacker is capable of measuring side-channel information
leaked from the implementation of the targeted architecture.

m The crucial information for this work are the weights of the
first layer.

m Indeed, when MLP reads the input, it propagates it to all the
nodes, performing basic arithmetic operations.

m This arithmetic operation with different weights and common
unknown input leads to input recovery attack via side-channel.

36/45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

‘—Recovering the Input of Neural Networks

Experimental Setup

m The training phase is conducted offline, and the trained
network is then implemented in C language and compiled on
the microcontroller.

m In our experiments, we consider MLP architectures consisting
of a different number of layers and nodes in those layers.

m Note, we are only interested in the input layer where a higher
number of neurons is beneficial for the attacker.

37/45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Recovering the Input of Neural Networks

Results

m It can be extremely complex to recover the input by observing
outputs from a known network.

m The proposed attack targets the multiplication operation in
the first hidden layer.

m The main target for CPA is the multiplication m = x - w of a
known weight w with a secret input x.

m As x changes from one measurement (input) to another,
information learned from one measurement cannot be used
with another measurement, preventing any statistical analysis
over a set of different inputs.

38/45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Recovering the Input of Neural Networks

Results

m To perform information exploitation over a single
measurement, we perform a horizontal attack.

m The weights in the first hidden layer are all multiplied with the
same input x, one after the other.

m M multiplications, corresponding to M different weights (or
neurons) in the first hidden layer are isolated.

m A single trace is cut into M smaller traces, each one
corresponding to one multiplication with a known associated
weight.

m Next, the value of the input is statistically inferred by applying
a standard CPA as explained before on the M smaller traces.

39/45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

‘—Recovering the Input of Neural Networks

HPA

X*Wy

*
Split to 4 XTW2
multiplications

——

*
X*Wy

One measurement with 4 multiplications
aligned horizontally

X*W

====

40/45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

‘—Recovering the Input of Neural Networks

Results on ATMega

1
— Targeted value
—Incorrect values
0.95
_5 0.9
8
o
o085
0.8
0.75 ,

20 40 60 80 100
number of neurons

Figure: The first byte recovery (sign and 7-bit exponent).

41/45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

‘—Recovering the Input of Neural Networks

Results

m The attack needs around 20 or more multiplications to reliably
recover the input.

m In general, 70 multiplications are enough to recover all the
bytes of the input, up to the desired precision of 2 decimal
digits.

m This means that in the current setting, the proposed attack
works very well on medium to large-sized networks, with at
least 70 neurons in the first hidden layer, which is no issue in
modern architectures used today.

42/45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

‘—Recovering the Input of Neural Networks

Results on ARM Cortex M3

1.0 - - T T
— Targeted value
— Incorrect values

0.8

o
o

correlation

o
'S

0.2+ 1

200 200 600 800 1000
number of neurons

Figure: Correlation comparison between correct and incorrect inputs for target value

2.453. 43,45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

Recovering the Input of Neural Networks

Attack on MNIST Database

Figure: Original images (top) and recovered images with precision error (bottom).

44 /45

Reverse Engineering of Neural Network Architectures Through Side-channel Information

‘—Recovering the Input of Neural Networks

Questions?

Thanks for your attention!

stjepan@computer.org Q ?

45 /45

	Introduction
	Reverse Engineering of Neural Networks
	Recovering the Input of Neural Networks

