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Motivation
• How to reliably protect sensitive data and code from disclosure and 

modification?
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Trusted Execution Environments (TEEs)
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Focus of This Talk:
Memory corruption attacks

against TEE software
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Three Decades of Software Exploits
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Memory Corruption Attack Classification
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Probabilistic vs Enforcement-Based Defense 
Approach

(Fine-grained) Code 
Randomization

[Cohen 1993 & Larsen et al., SoK IEEE 
S&P 2014]
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Intel Software Guard Extensions (SGX)
[McKeen et al., Hoekstra et al., Anati et al., HASP’13]
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Overview on Intel SGX
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App-Enclave Communication

13

APP

Enclave

App Code

App Data

Enclave Code

Enclave Data
SGX SDK

Entry & Exit
Entry to Enclave
code is only allowed
at pre-defined
entry points



First Run-Time Attacks and Defenses 
Targeting Intel SGX
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Existing Attacks and Defenses

• ROP attack against (unknown) 
encrypted enclave binaries

• Based on probing attacks 
• Requires kernel privileges and 

ability to repeatedly crash the 
enclave

• Enforces fine-grained memory 
randomization of SGX enclave 

• Software-based data execution 
prevention (DEP)

• Proposes control-flow integrity 
for return instructions
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Dark ROP
[USENIX Sec. 2017]

SGX-Shield
[NDSS 2017]



Can we bypass memory 
randomization in SGX?
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Our main observation is that the Intel SGX 
SDK includes dangerous return-oriented 

programming gadgets which are essential 
for app-enclave communication

[with Biondo et al., USENIX Security 2018]
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ECALL: Call into an enclave
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OCALL: Enclave Call to the Host Application
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AEX: Asynchronous Enclave Exit (Exception)
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Restoring State is Critical

• After handling the exception, the 
register state is restored by the 
tRTS function continue_execution()
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OCALL Frame
Partial Register State

Exception
information structure

Full Register State

• When OCALL returns, the register
state is restored by the tRTS
function asm_oret()
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If an attacker manages to inject a fake exception structure or 
fake ocall frame, the attacker controls the subsequent state



Basic Attack Idea
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Two Attack Primitives

• Prerequisites: function pointer 
overwrite and control of rdi
register
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Chaining the Two Primitives
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Attack Workflow for Stealing SGX-Protected Keys
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However, this attack doesn‘t work if SGX-Shield 
randomizes the SGX address space 
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Revisited Attack to Bypass SGX-Shield
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Possible Defenses

• Removing SDK from enclave memory?
• Not feasible as OCALL, ECALL, AEX require the tRTS

• Randomizing SDK code?
• Challenging, the tRTS is accessed through fixed entry 

points
• Discovering vulnerabilities beforehand?

• Last part of this talk
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There are several open questions:

1. How likely are memory corruption 
vulnerabilities in SGX enclaves?

2. Can we develop an automated analysis 
system that discovers memory corruption 
vulnerabilities?



System Model of SGX
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TeeRex Architecture
[with Cloosters et al., USENIX Sec. 2020]
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Exploits in Public Enclaves found with TEEREX

Project Exploit Fixed Source 
Code Target

Intel SGX GMP Example ✓ ✓ ✓ Linux amd64

Baidu Rust SGX SDK “tlsclient” ✓ ✓ ✓ Linux amd64

TaLoS ✓ Not planned ✓ Linux amd64
WolfSSL Example Enclave ✓ ✓ ✓ Linux amd64
Synaptics Fingerprint Driver ✓ ✓ × Windows amd64

Goodix Fingerprint Driver ✓ ✓ × Windows amd64

SignalApp Contact Discovery × - ✓ Linux amd64
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CVE-2019-18619

CVE-2020-11667

Exploit Source Code: https://github.com/uni-due-syssec/teerex-exploits



Baidu/Apache Rust SDK: tlsclient
Pointers to overlapping memory
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Discussion

•Symbolic execution vs fuzzing
•Mitigation technologies for TEEs
•What about other TEE architectures? ARM TZ, 
KeyStone, CURE
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Harware-assisted application security is vital to
implement trustworthy systems and enhanced
security services

However, we need to make sure that an attacker
cannot exploit bugs inside the TEE

Conclusion



Q&A


	How Secure are Trusted Execution Environments?�Finding and Exploiting Memory Corruption Errors in Enclave Code�
	Motivation
	Trusted Execution Environments (TEEs)
	Foliennummer 6
	Three Decades of Software Exploits
	Memory Corruption Attack Classification
	Probabilistic vs Enforcement-Based Defense Approach
	Intel Software Guard Extensions (SGX)�[McKeen et al., Hoekstra et al., Anati et al., HASP’13]� 
	Overview on Intel SGX
	App-Enclave Communication
	First Run-Time Attacks and Defenses Targeting Intel SGX
	Existing Attacks and Defenses
	Can we bypass memory randomization in SGX?
	Our main observation is that the Intel SGX SDK includes dangerous return-oriented programming gadgets which are essential for app-enclave communication��[with Biondo et al., USENIX Security 2018]
	ECALL: Call into an enclave
	OCALL: Enclave Call to the Host Application
	AEX: Asynchronous Enclave Exit (Exception)
	Restoring State is Critical
	Basic Attack Idea
	Two Attack Primitives
	Chaining the Two Primitives
	Attack Workflow for Stealing SGX-Protected Keys
	However, this attack doesn‘t work if SGX-Shield randomizes the SGX address space 
	Revisited Attack to Bypass SGX-Shield
	Possible Defenses
	There are several open questions:��1. How likely are memory corruption vulnerabilities in SGX enclaves?��2. Can we develop an automated analysis system that discovers memory corruption vulnerabilities?
	System Model of SGX
	TeeRex Architecture�[with Cloosters et al., USENIX Sec. 2020]
	Exploits in Public Enclaves found with TeeRex
	Baidu/Apache Rust SDK: tlsclient�Pointers to overlapping memory
	Discussion
	Conclusion
	Foliennummer 36

