Building Intelligent Trustworthy Computing Systems: Challenges and Opportunities
4 November, 2021

How Secure are Trusted Execution Environments?
Finding and Exploiting Memory Corruption Errors in
Enclave Code

Lucas Davi
Secure Software Systems
University of Duisburg-Essen, Germany

Motivation

* How to reliably protect sensitive data and code from disclosure and
modification?

e
=0

Passwords Intellectual Property Medical records

Trusted Execution Environments (TEEs)

Normal World Secure World

- Trusted Trusted W o, \|ar TEE
App App Implementations:
* ARM TrustZone
* |ntel Software

Guard Extensions
(SGX)

Trusted Operating
System

Operating System

Hardware

Focus of This Talk:

Memory corruption attacks
against TEE software

Three Decades of Software Exploits

: : Return-oriented
. return-into-libc : .
Morris Worm . programming Continuing Arms
Solar Designer
1988 1997 Shacham Race
CCS 2007

Borrowed
Code Chunk
Exploitation

Krahmer

2005

Code
Injection
AlephOne
1996

Memory Corruption Attack Classification

Code-Injection Attack Code-Reuse Attack
e.g., Return-Oriented Programming

corrupt code
pointer

g gé corrupt code pointer

\ code
] Adversary

® inject malicious

Data flow
Program flow

Probabilistic vs Enforcement-Based Defense

Approach
(Fine-grained) Code ; Control-Flow Integrity
Randomization (CFI)
[Cohen 1993 & Larsen et al., SOK I[EEE [Abadi et al., CCS 2005 &
S&P 2014] § TISSEC 2009]

Exit(C) == Label_5 Label_1

Label 4

'

Memory (randomized)

Intel Software Guard Extensions (SGX)
[McKeen et al., Hoekstra et al., Anati et al., HASP'13]

11

Overview on Intel SGX

APP Malware

App Code App Code
App Data

Enclave

e ———
f Y

Operating System

Hardware

APP
App Code

App Data

Enclave |

12

App-Enclave Communication

Enclave Code

Enclave Data

Enclave

Entry & Exit

Entry to Enclave
code is only allowed
at pre-defined
entry points

13

First Run-Time Attacks and Defenses
Targeting Intel SGX

Existing Attacks and Defenses

Dark ROP

% [USENIX Sec. 2017)

* ROP attack against (unknown)
encrypted enclave binaries

* Based on probing attacks

* Requires kernel privileges and
ability to repeatedly crash the
enclave

SGX-Shield

[NDSS 2017]

* Enforces fine-grained memory
randomization of SGX enclave

e Software-based data execution
prevention (DEP)

* Proposes control-flow integrity
for return instructions

15

Can we

randomn

OYPass memory
ization in SGX?

16

Our main observation is that the Intel SGX
SDK includes dangerous return-oriented
programming gadgets which are essential
for app-enclave communication

[with Biondo et al., USENIX Security 2018]

ECALL: Call into an enclave

APP
App Code

Untrusted Runtime System (uRTS)
App Data ECALL

Enclave Code Trusted Runtime System (tRTS)

Enclave Stack

Enclave

OCALL: Enclave Call to the Host Application

App Code

Untrusted Runtime System (uRTS)
App Data

Enclave Code Trusted Runtime System (tRTS)
OCALL

Enclave Stack

OCALL Frame
Register State

: Asynchronous Enclave Exit (Exception)

App Code

Untrusted Runtime System (uRTS)
App Data

Enclave Code Trusted Runtime System (tRTS)

Enclave Stack

Exception information
structure
Register State
Enclave

AEX (asynchronous enclave exit)

O
G
M
S
Q)
=
>
da
%)
<
n
—t
(D
3

Restoring State is Critical

OCALL Frame Exception

information structure

Dartial Register State Full Register State

* When OCALL returns, the register * After handling the exception, the
state is restored by the tRTS register state is restored by the
function asm_oret() tRTS function continue execution()

If an attacker manages to inject a fake exception structure or

fake ocall frame, the attacker controls the subsequent state

21

Basic Attack Idea

Counterfeit State
Information

App Code

App Data

| Enclave Code

|
7 il

4.

APP

Untrusted Runtime System (uRTS)

Trusted Runtime System (tRTS)

Enclave Stack

Counterfeit State
Mal. Register State

Two Attack Primitives

ORET Primitive

* Prerequisite: stack control

CONT Primitive

* Prerequisites: function pointer
overwrite and control of rdi
register

23

Chaining the Two Primitives

ORET Primitive

ROP Gadget

CONT Primitive

24

Attack Workflow for Stealing SGX-Protected Keys

Untrusted Runtime System (uRTS)

T T T -
Trusted Runtime System (tRTS)

ORET Primitive CONT Primitive
Enclave Code
Counterfeit State " 45

Information

Enclave Stack

unterfeit State
Fake OCALL Frames

Enclave Except. Structures

However, this attack doesn‘t work if SGX-Shield
randomizes the SGX address space

Revisited Attack to Bypass SGX-Shield

Untrusted Runtime System (uRTS)

L T T
Trusted Runtime System (tRTS)
ORET Primitive =9 CONT Primitive

Counterfeit State r Memory Write 4J

Information

Sz llan 2 Enclave Stack

Stealing Keys Counterfeit State
Fake OCALL Frames

Enclave Except. Structures

Possible Defenses

* Removing SDK from enclave memory?
* Not feasible as OCALL, ECALL, AEX require the tRTS

 Randomizing SDK code?
e Challenging, the tRTS is accessed through fixed entry

points
* Discovering vulnerabilities beforehand?
e Last part of this talk

28

There are several open questions:

1. How likely are memory corruption
vulnerabilities in SGX enclaves?

2. Can we develop an automated analysis
system that discovers memory corruption
vulnerabilities?

System Model of SGX

Critical
point Trust Boundary

Untrusted data l |

Secure storage
for secrets

Results

30

TeeRex Architecture
[with Cloosters et al., USENIX Sec. 2020]

Preprocessor é//\\\TEEREX Symbolic Execution
(Static Analysis) \

Controlled Jumps

Controlled Write

NULL Ptr Dereference

Symbolic
Explorer -
(ANGR) [~

Vulnerability Class
Vuln. Instruction

Controlled Pointer

Symbolic
Execution Trace

31

Exploits in Public Enclaves found with TEEREX

Source

Project Exploit Fixed Code Target
intel) Intel SGX GMP Example v v v Linuxamd64
M Baidu Rust SGX SDK “tIsclient” v v v Linux amd64
TaloS v Not planned v Linux amd64
WolfSSL Example Enclave V4 V4 V4 Linux amd64

)] Synaptics Fingerprint Driver

e Goodix Fingerprint Driver

SignalApp Contact Discovery X - v Linux amd64

O Exploit Source Code: https://github.com/uni-due-syssec/teerex-exploits

32

Baidu/Apache Rust SDK: tlsclient
Pointers to overlapping memory

Enclave Code

v

ORET Primitive
Arbitrary code execution

Enclave Memory

Enclave

Discussion

* Symbolic execution vs fuzzing
* Mitigation technologies for TEEs

 What about other TEE architectures? ARM TZ,
KeyStone, CURE

Conclusion

Harware-assisted application security is vital to
implement trustworthy systems and enhanced
security services

However, we need to make sure that an attacker
cannot exploit bugs inside the TEE

	How Secure are Trusted Execution Environments?�Finding and Exploiting Memory Corruption Errors in Enclave Code�
	Motivation
	Trusted Execution Environments (TEEs)
	Foliennummer 6
	Three Decades of Software Exploits
	Memory Corruption Attack Classification
	Probabilistic vs Enforcement-Based Defense Approach
	Intel Software Guard Extensions (SGX)�[McKeen et al., Hoekstra et al., Anati et al., HASP’13]�
	Overview on Intel SGX
	App-Enclave Communication
	First Run-Time Attacks and Defenses Targeting Intel SGX
	Existing Attacks and Defenses
	Can we bypass memory randomization in SGX?
	Our main observation is that the Intel SGX SDK includes dangerous return-oriented programming gadgets which are essential for app-enclave communication��[with Biondo et al., USENIX Security 2018]
	ECALL: Call into an enclave
	OCALL: Enclave Call to the Host Application
	AEX: Asynchronous Enclave Exit (Exception)
	Restoring State is Critical
	Basic Attack Idea
	Two Attack Primitives
	Chaining the Two Primitives
	Attack Workflow for Stealing SGX-Protected Keys
	However, this attack doesn‘t work if SGX-Shield randomizes the SGX address space
	Revisited Attack to Bypass SGX-Shield
	Possible Defenses
	There are several open questions:��1. How likely are memory corruption vulnerabilities in SGX enclaves?��2. Can we develop an automated analysis system that discovers memory corruption vulnerabilities?
	System Model of SGX
	TeeRex Architecture�[with Cloosters et al., USENIX Sec. 2020]
	Exploits in Public Enclaves found with TeeRex
	Baidu/Apache Rust SDK: tlsclient�Pointers to overlapping memory
	Discussion
	Conclusion
	Foliennummer 36

