
How Secure are Trusted Execution Environments?
Finding and Exploiting Memory Corruption Errors in

Enclave Code

Lucas Davi
Secure Software Systems

University of Duisburg-Essen, Germany

Building Intelligent Trustworthy Computing Systems: Challenges and Opportunities
4 November, 2021

Motivation
• How to reliably protect sensitive data and code from disclosure and

modification?

2

Passwords Intellectual Property Medical records

Trusted Execution Environments (TEEs)

5

Hardware

App

Operating System

CPU Memory

App Trusted
App

Trusted Operating
System

Trusted
App

Normal World Secure World

Popular TEE
Implementations:
• ARM TrustZone
• Intel Software

Guard Extensions
(SGX)

Focus of This Talk:
Memory corruption attacks

against TEE software

6

Three Decades of Software Exploits

Morris Worm
1988

Code
Injection

AlephOne
1996

return-into-libc
Solar Designer

1997

Borrowed
Code Chunk
Exploitation

Krahmer
2005

Return-oriented
programming

Shacham
CCS 2007

Continuing Arms
Race

…

Memory Corruption Attack Classification

A

B

DC

E F
X

Adversary

A

B

DC

E F

DEP Data flow
Program flow

corrupt code pointerinject malicious
code

corrupt code
pointer

Code-Injection Attack Code-Reuse Attack
e.g., Return-Oriented Programming

Probabilistic vs Enforcement-Based Defense
Approach

(Fine-grained) Code
Randomization

[Cohen 1993 & Larsen et al., SoK IEEE
S&P 2014]

Control-Flow Integrity
(CFI)

[Abadi et al., CCS 2005 &
TISSEC 2009]

A

B

DC

E F

Label_1

Label_2

Label_4

Label_6Label_5

Label_3

A

B

DC

E F

Memory

A

B

C

E

D

F
Memory (randomized)

D

A

E

F

B

C

Exit(C) == Label_5

Intel Software Guard Extensions (SGX)
[McKeen et al., Hoekstra et al., Anati et al., HASP’13]

11

Overview on Intel SGX

12

APP

Hardware

APP

Enclave

Operating System

CPU

SGX

Enclave

App Code

App Data

Enclave

App Code

App Data

Malware
App Code

App Data

BUG

App-Enclave Communication

13

APP

Enclave

App Code

App Data

Enclave Code

Enclave Data
SGX SDK

Entry & Exit
Entry to Enclave
code is only allowed
at pre-defined
entry points

First Run-Time Attacks and Defenses
Targeting Intel SGX

14

Existing Attacks and Defenses

• ROP attack against (unknown)
encrypted enclave binaries

• Based on probing attacks
• Requires kernel privileges and

ability to repeatedly crash the
enclave

• Enforces fine-grained memory
randomization of SGX enclave

• Software-based data execution
prevention (DEP)

• Proposes control-flow integrity
for return instructions

15

Dark ROP
[USENIX Sec. 2017]

SGX-Shield
[NDSS 2017]

Can we bypass memory
randomization in SGX?

16

Our main observation is that the Intel SGX
SDK includes dangerous return-oriented

programming gadgets which are essential
for app-enclave communication

[with Biondo et al., USENIX Security 2018]

17

ECALL: Call into an enclave

18

APP

Enclave

App Code

App Data

Enclave Code

Enclave Stack

Trusted Runtime System (tRTS)

Untrusted Runtime System (uRTS)

Function 0

Function 1

Function 2

Function 3

ECALL

OCALL: Enclave Call to the Host Application

19

APP

Enclave

App Code

App Data

Enclave Code

Enclave Stack

Trusted Runtime System (tRTS)

Untrusted Runtime System (uRTS)

Function 0

Function 1

Function 2

Function 3

OCALL Frame
Register State

OCALL

AEX: Asynchronous Enclave Exit (Exception)

20

APP

Enclave

App Code

App Data

Enclave Code

Enclave Stack

Trusted Runtime System (tRTS)

Untrusted Runtime System (uRTS)

Function 0

Function 1

Function 2

Function 3

Exception information
structure

Register State

AEX (asynchronous enclave exit)

O
perating System

Restoring State is Critical

• After handling the exception, the
register state is restored by the
tRTS function continue_execution()

21

OCALL Frame
Partial Register State

Exception
information structure

Full Register State

• When OCALL returns, the register
state is restored by the tRTS
function asm_oret()

rbx rsi rdi rpb r12

r13r14

r15

rsp rip

rdi

rip

all_other_regs

If an attacker manages to inject a fake exception structure or
fake ocall frame, the attacker controls the subsequent state

Basic Attack Idea

22

APP

Enclave

App Code

App Data

Enclave Code

Enclave Stack

Trusted Runtime System (tRTS)

Untrusted Runtime System (uRTS)

Function 0

Function 1

Function 2

Function 3

Counterfeit State
Mal. Register State

Counterfeit State
Information

Two Attack Primitives

• Prerequisites: function pointer
overwrite and control of rdi
register

23

ORET Primitive CONT Primitive

• Prerequisite: stack control

rbx rsi rdi rpb r12

r13r14

r15

rsp rip

rdi

all_other_regs

rip

Chaining the Two Primitives

24

ORET Primitive
rip, rsp rip, rdi, rsi, rbp, rbx, r12-r15

CONT Primitive
rip, rdi rip, rsp, all_other_regs

ROP Gadget

Attack Workflow for Stealing SGX-Protected Keys

25

APP

Enclave

App Code

App Data

Enclave Code

Enclave Stack

Trusted Runtime System (tRTS)

Untrusted Runtime System (uRTS)

Function 0

get_key

send_file

Function 3

Counterfeit State
Fake OCALL Frames
Except. Structures

Counterfeit State
Information

ORET Primitive CONT Primitive

rsp rdirip all_other_regs

However, this attack doesn‘t work if SGX-Shield
randomizes the SGX address space

26

Revisited Attack to Bypass SGX-Shield

27

APP

Enclave

App Code

App Data

Enclave Code

Enclave Stack

Trusted Runtime System (tRTS)

Untrusted Runtime System (uRTS)

Function 0

get_key

send_file

Function 3

Counterfeit State
Fake OCALL Frames
Except. Structures

Counterfeit State
Information

ORET Primitive CONT Primitive

rsp rdirip all_other_regs

Memory Write

Shellcode
Stealing Keys

Possible Defenses

• Removing SDK from enclave memory?
• Not feasible as OCALL, ECALL, AEX require the tRTS

• Randomizing SDK code?
• Challenging, the tRTS is accessed through fixed entry

points
• Discovering vulnerabilities beforehand?

• Last part of this talk

28

There are several open questions:

1. How likely are memory corruption
vulnerabilities in SGX enclaves?

2. Can we develop an automated analysis
system that discovers memory corruption
vulnerabilities?

System Model of SGX

30

Host
application

Enclave

Processing
untrusted data

and secrets

Untrusted data

Secure storage
for secrets

Results

Trust Boundary
Critical
point

TeeRex Architecture
[with Cloosters et al., USENIX Sec. 2020]

Enclave
Binary

Preprocessor
(Static Analysis)

Identify
ECALLs

Symbolic Hooks
for common

Functions

Exploit

Vulnerability Report

Controlled Pointer

Symbolic
Execution Trace

Vuln. Instruction

Vulnerability Class

TEEREX Symbolic Execution

Emulation
of Special

Instructions

Pointer
Tracking

Symbolic
Explorer
(ANGR)

Enclave
Loader

Vulnerability Detection
Controlled Jumps

Controlled Write

NULL Ptr Dereference

31

Exploits in Public Enclaves found with TEEREX

Project Exploit Fixed Source
Code Target

Intel SGX GMP Example ✓ ✓ ✓ Linux amd64

Baidu Rust SGX SDK “tlsclient” ✓ ✓ ✓ Linux amd64

TaLoS ✓ Not planned ✓ Linux amd64
WolfSSL Example Enclave ✓ ✓ ✓ Linux amd64
Synaptics Fingerprint Driver ✓ ✓ × Windows amd64

Goodix Fingerprint Driver ✓ ✓ × Windows amd64

SignalApp Contact Discovery × - ✓ Linux amd64

32

CVE-2019-18619

CVE-2020-11667

Exploit Source Code: https://github.com/uni-due-syssec/teerex-exploits

Baidu/Apache Rust SDK: tlsclient
Pointers to overlapping memory

APP

Enclave

Enclave Code

return new SSLSession
if sgx_is_outside_enclave(ssl)

return ERROR;

// use ssl session

ORET Primitive
Arbitrary code execution

Memory MemoryEnclave Memory
SSLSSL SSLvp

tr

SSL object is not strictly outside
vtable pointer in object (outside enclave)

Discussion

•Symbolic execution vs fuzzing
•Mitigation technologies for TEEs
•What about other TEE architectures? ARM TZ,
KeyStone, CURE

34

Harware-assisted application security is vital to
implement trustworthy systems and enhanced
security services

However, we need to make sure that an attacker
cannot exploit bugs inside the TEE

Conclusion

Q&A

	How Secure are Trusted Execution Environments?�Finding and Exploiting Memory Corruption Errors in Enclave Code�
	Motivation
	Trusted Execution Environments (TEEs)
	Foliennummer 6
	Three Decades of Software Exploits
	Memory Corruption Attack Classification
	Probabilistic vs Enforcement-Based Defense Approach
	Intel Software Guard Extensions (SGX)�[McKeen et al., Hoekstra et al., Anati et al., HASP’13]�
	Overview on Intel SGX
	App-Enclave Communication
	First Run-Time Attacks and Defenses Targeting Intel SGX
	Existing Attacks and Defenses
	Can we bypass memory randomization in SGX?
	Our main observation is that the Intel SGX SDK includes dangerous return-oriented programming gadgets which are essential for app-enclave communication��[with Biondo et al., USENIX Security 2018]
	ECALL: Call into an enclave
	OCALL: Enclave Call to the Host Application
	AEX: Asynchronous Enclave Exit (Exception)
	Restoring State is Critical
	Basic Attack Idea
	Two Attack Primitives
	Chaining the Two Primitives
	Attack Workflow for Stealing SGX-Protected Keys
	However, this attack doesn‘t work if SGX-Shield randomizes the SGX address space
	Revisited Attack to Bypass SGX-Shield
	Possible Defenses
	There are several open questions:��1. How likely are memory corruption vulnerabilities in SGX enclaves?��2. Can we develop an automated analysis system that discovers memory corruption vulnerabilities?
	System Model of SGX
	TeeRex Architecture�[with Cloosters et al., USENIX Sec. 2020]
	Exploits in Public Enclaves found with TeeRex
	Baidu/Apache Rust SDK: tlsclient�Pointers to overlapping memory
	Discussion
	Conclusion
	Foliennummer 36

