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Motivation

* How to reliably protect sensitive data and code from disclosure and
modification?
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Trusted Execution Environments (TEEs)
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Focus of This Talk:

Memory corruption attacks
against TEE software



Three Decades of Software Exploits
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Memory Corruption Attack Classification

Code-Injection Attack Code-Reuse Attack
e.g., Return-Oriented Programming
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Probabilistic vs Enforcement-Based Defense

Approach
(Fine-grained) Code ; Control-Flow Integrity
Randomization (CFI)
[Cohen 1993 & Larsen et al., SOK I[EEE [Abadi et al., CCS 2005 &
S&P 2014] § TISSEC 2009]
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Intel Software Guard Extensions (SGX)
[McKeen et al., Hoekstra et al., Anati et al., HASP'13]
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Overview on Intel SGX
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App-Enclave Communication

Enclave Code

Enclave Data

Enclave

Entry & Exit

Entry to Enclave
code is only allowed
at pre-defined
entry points
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First Run-Time Attacks and Defenses
Targeting Intel SGX



Existing Attacks and Defenses

Dark ROP

% [USENIX Sec. 2017)

* ROP attack against (unknown)
encrypted enclave binaries

* Based on probing attacks

* Requires kernel privileges and
ability to repeatedly crash the
enclave

SGX-Shield

[NDSS 2017]

* Enforces fine-grained memory
randomization of SGX enclave

e Software-based data execution
prevention (DEP)

* Proposes control-flow integrity
for return instructions

15



Can we

randomn

OYPass memory
ization in SGX?
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Our main observation is that the Intel SGX
SDK includes dangerous return-oriented
programming gadgets which are essential
for app-enclave communication

[with Biondo et al., USENIX Security 2018]



ECALL: Call into an enclave
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OCALL: Enclave Call to the Host Application
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: Asynchronous Enclave Exit (Exception)

App Code

Untrusted Runtime System (uRTS)
App Data
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Enclave Stack
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structure
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Restoring State is Critical

OCALL Frame Exception

information structure

Dartial Register State Full Register State

* When OCALL returns, the register * After handling the exception, the
state is restored by the tRTS register state is restored by the
function asm_oret() tRTS function continue execution()

If an attacker manages to inject a fake exception structure or

fake ocall frame, the attacker controls the subsequent state
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Basic Attack Idea
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Two Attack Primitives

ORET Primitive

* Prerequisite: stack control

CONT Primitive

* Prerequisites: function pointer
overwrite and control of rdi
register
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Chaining the Two Primitives

ORET Primitive

ROP Gadget

CONT Primitive
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Attack Workflow for Stealing SGX-Protected Keys
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However, this attack doesn‘t work if SGX-Shield
randomizes the SGX address space




Revisited Attack to Bypass SGX-Shield
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Possible Defenses

* Removing SDK from enclave memory?
* Not feasible as OCALL, ECALL, AEX require the tRTS

 Randomizing SDK code?
e Challenging, the tRTS is accessed through fixed entry

points
* Discovering vulnerabilities beforehand?
e Last part of this talk
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There are several open questions:

1. How likely are memory corruption
vulnerabilities in SGX enclaves?

2. Can we develop an automated analysis
system that discovers memory corruption
vulnerabilities?



System Model of SGX
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TeeRex Architecture
[with Cloosters et al., USENIX Sec. 2020]
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Exploits in Public Enclaves found with TEEREX

Source

Project Exploit Fixed Code Target
intel) Intel SGX GMP Example v v v Linuxamd64
M Baidu Rust SGX SDK “tIsclient” v v v Linux amd64
TaloS v Not planned v Linux amd64
WolfSSL Example Enclave V4 V4 V4 Linux amd64

)] Synaptics Fingerprint Driver

e Goodix Fingerprint Driver

SignalApp Contact Discovery X - v Linux amd64

O Exploit Source Code: https://github.com/uni-due-syssec/teerex-exploits
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Baidu/Apache Rust SDK: tlsclient
Pointers to overlapping memory

Enclave Code
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Enclave Memory

Enclave




Discussion

* Symbolic execution vs fuzzing
* Mitigation technologies for TEEs

 What about other TEE architectures? ARM TZ,
KeyStone, CURE



Conclusion

Harware-assisted application security is vital to
implement trustworthy systems and enhanced
security services

However, we need to make sure that an attacker
cannot exploit bugs inside the TEE
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